FIN-9540 Realtime- Cognitive IoT using DeepLearning and Online Learning on top of ApacheSpark Streaming and DeepLearning4J | Devoxx
bigdata Big Data & Machine Learning

Room B

Thursday from 11:55 AM til 12:45 PM

DeepLearning frameworks are popping up at very high frequency but only a few of them are suitable to run on clusters, use GPUs and supporting topologies beyond Feed-Forward at the same time. DeepLearning4J features all this without forcing you to learn new exotic programming languages and in addition also scales-out on well established infrastructures like ApacheSpark and Hadoop/YARN. In this talk we will introduce DeepLearning4J on top of ApacheSpark with an example to create an anomaly detector for IoT sensor data with a LSTM auto encoder neural network.

 Deep Learning    Deeplearning4j    Apache Spark    Hadoop    YARN  
Romeo Kienzler Romeo Kienzler

Romeo Kienzler works as Chief Data Scientist in the IBM Watson IoT World Wide team helping clients to apply advanced machine learning at scale on their IoT sensor data. His current research focus is on scalable machine learning on Apache Spark. He is contributor to various open source projects and works as associate professor for artificial intelligence at a swiss university. Romeo Kienzler is a member of the IBM Technical Expert Council and the IBM Academy of Technology - IBM’s leading brain trusts.